

CLASS XII SAMPLE PAPER MATHS

Time Allowed : $\mathbf{3}$ hours
Maximum Marks : 100

General Instructions : -

* All questions are compulsory.
* The question paper consists of 29 questions divided in to three sections A, B and C. Section A comprises of 10 questions of 1 mark each, Section B comprises of 12 questions of 4 marks each and Section C comprises of 7 questions of 6 marks each.
* All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
* There is no over all choice. However, internal choice has been provided in 4 questions of four marks each and 2 questions of six marks each. You have to attempt only one of the alternatives in all such questions.
* Use of calculators is not permitted

Section - A (Q1- Q10 each carry one mark.)

1. Evaluate : $\int \frac{\operatorname{Sin} \sqrt{x} d x}{\sqrt{x}}$
2. Find the value of x, if

$$
\left(\begin{array}{rr}
3 x+y & -y \\
2 y-x & 3
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
-5 & 3
\end{array}\right)
$$

3. Find the principle value of $\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)$
4. Find the value of p if $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+3 \hat{j}+p \hat{k})=\overrightarrow{0}$.

chaserguess	CBSEGuess.com

5. Write the direction cosines of a line equally inclined to the three coordinate axes.
6. If \vec{p} is a unit vector and $(\vec{x}-\vec{p}) \cdot(\vec{x}+\vec{p})=80$, then find $|\vec{x}|$.
7. Find the value of x if

$$
\left|\begin{array}{cc}
x & -4 \\
8 & -2 x
\end{array}\right|=0
$$

8. Write the value of the following determinant :

$$
\left|\begin{array}{lll}
a-b & b-c & c-a \\
b-c & c-a & a-b \\
c-a & a-b & b-c
\end{array}\right|
$$

9. Find $\overrightarrow{\boldsymbol{a}} \cdot \overrightarrow{\boldsymbol{c}}$, if $|\overrightarrow{\boldsymbol{a}}|=5,|\overrightarrow{\boldsymbol{c}}|=4$ and $\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{c}}=8$.
10. Find $\frac{d y}{d x}$, if $y=e^{a^{x}}$,

Section - B (Q11- Q22 each carry 4- marks.)

11. If $\sin y=x \sin (a+y)$, prove that $\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}$.

OR

If $(\cos x)^{y}=(\sin y)^{x}$, find $\frac{d y}{d x}$.
12. Evaluate :

$$
\int x \sin ^{-1} x d x
$$

OR

chosess	CBSEGuess.com

$$
\int_{0}^{\frac{\pi}{2}} \sqrt{\tan x}+\sqrt{\cot x} d x
$$

13. On a multiple choice examination with three possible answers (out of which only one is correct) for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing ?
14. Evaluate:

$$
\int \frac{2 x^{2}+3 d x}{\left(x^{2}-1\right)\left(x^{2}+4\right)}
$$

15. Find the shortest distance between the following two lines :

$$
\begin{aligned}
& \vec{r}=(1+\lambda) \hat{i}+(2-\lambda) \hat{j}+(\lambda+1) \hat{k} \\
& \vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\mu(2 \hat{i}+\hat{j}+2 \hat{k})
\end{aligned}
$$

16. Prove the following :

$$
\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)=\frac{x}{2}, \quad x \in\left(0, \frac{\pi}{4}\right)
$$

OR

Solve for x :

$$
2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)
$$

17. The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with the unit vector along the sum of vectors $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of λ.

chasess	CBSEGuess.com

18. Find the equation of the tangent and normal to the curve $x=a \sin ^{3} t, y=b \cos ^{3} t$ at the point $\mathrm{t}=\pi / 4$.

OR

If $x=a(\cos t+t \sin t), y=b(\sin t-t \cos t)$. find $\frac{d^{2} y}{{d x^{2}}^{2}}$,
19. Prove that : $\left|\begin{array}{lll}x & x^{2} & 1+p x^{3} \\ y & y^{2} & 1+p y^{3} \\ z & z^{2} & 1+p z^{3}\end{array}\right|=(1+p x y z)(x-y)(y-z)(z-x)$.
20. Solve the following differential equation :

$$
x \frac{d y}{d x}=y-x \tan \left(\frac{y}{x}\right)
$$

21. Solve the following differential equation :

$$
\left(1+y^{2}\right) \mathrm{dx}=\left(\tan ^{-1} y-x\right) \mathrm{dy}, \quad \text { given } \mathrm{y}(0)=0
$$

22. If $y=\frac{\sin ^{-1} x}{\sqrt{1}-x^{2}}$, show that

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}-y=0
$$

Section - C (Q23- Q29 each carry 6- marks.)
23. Obtain the inverse of the following matrix using elementary operations :

$$
A=\left[\begin{array}{rrr}
3 & 0 & -1 \\
2 & 3 & 0 \\
0 & 4 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Find the inverse of the }\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & 1 & -3 \\
1 & 1 & 1
\end{array}\right] \text { and hence solve the system of equations: } \\
& x+2 y+z=4, \quad-x+y+z=0, x-3 y+z=2
\end{aligned}
$$

24. Find the equation of the plane which is perpendicular to the plane $5 x+3 y+6 z+8=0$ and which contains the line of intersection of the planes $x+2 y+3 z-4=0 \quad \& \quad 2 x+y-z+5=0$
25. Draw the rough sketch of $\left\{(\mathrm{x}, \mathrm{y}):|x-1| \leq y \leq \sqrt{5-x^{2}}\right\}$.Using Integration find the area of the region enclosed.
26. Evaluate:

$$
\int_{0}^{\pi} \frac{x d x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}
$$

27. Show that the volume of the greatest cylinder which can be inscribed in a cone of height h and semi-vertical angle 30° is $\frac{4}{81} \pi \mathrm{~h}^{3}$.

OR

A manufacturer can sell x items at a price of Rs. $\left(5-\frac{x}{100}\right)$ each. The cost price of x items is Rs. $\left(\frac{x}{5}+500\right)$. Find the number of items he should sell to earn maximum profit.
28. A farmer has a supply of chemical fertilizer of type I which contains 10% Nitrogen and 5% Phosphoric acid and type II which contains 6% Nitrogen and 10% Phosphoric acid. After soil testing it was found that at least 14 kg of Nitrogen and 14 kg of Phosphoric acid is required for a good crop. The type I costs Rs. 2/kg and the type II cost Rs. 3/kg. How

many kilograms of each fertilizer should be used to meet the requirement so that the cost be minimum?
29. A lot of 100 bulbs is known to contain 10 defective and 90 non-defective bulbs. If 8 bulbs are selected at random, what is the probability that
(i) there will be 3 defective and 5 non-defective bulbs
(ii) there will be atleast one defective bulb.

